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System and Method for Encrypting
Data Using a Plurality of Processors

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates in general to a system
and method for using a plurality of processors as virtual
devices. More particularly, the present invention relates
to a system and method for using heterogeneous processors
as an encryption processor to encrypt and decrypt data on

behalf of other processes.

2. Description of the Related Art

In our modern society, software is increasingly
becoming one of the most valuable technologies. Software
controls devices, such as appliances, automobiles,
telephones, and especially computer systems. Computer
systems exist in a variety of forms. These forms include
traditional desktop and notebook computers, as well as
pervasive computing devices such as mobile telephones, and
personal digital assistants (PDAs). In addition, software
is used for entertainment purposes, such as games designed
for personal computers as well as games designed for

specialized gaming devices.

Large amounts of time, money, and resources are
dedicated towards creating software. Many companies derive
all or most of their income from creating software.
Software programs sold by these companies include

customized software that is written for particular
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environment or client, as well as off-the-shelf software

that is designed in written for larger group of users.

Because software is so valuable, and because computers
make it easy to create an exact copy of a program, software
piracy 1is widespread. Software pirates range from
individual computer users to professionals who deal
wholesale with stolen software. Software piracy exists in

homes, schools, businesses, and governments.

Anti-piracy measures that have previously been
employed include encrypting the software program. In this
manner, the user is provided with a "key" for opening the
software along with the encrypted software program. Only a
user with the right key can decrypt the software. A
challenge of this method, however, 1is that experienced
hackers can analyze the memory containing the executable
form of the decrypted code and create a non-encrypted
version. The non-encrypted version can then be distributed
to others who no longer need to use the "key" to open the

software.

Another anti-piracy measure is to use a device, often
called a "dongle," that must be used in order for the
software to operate. The device includes a key that is
checked by the software before the software will operate.
One challenge of this method is that users are often forced
to have several devices that they must attach to computers
prior to loading the software program. Another challenge
is that experienced hackers can read the key being provided
by the attached device and create a copy of the device or

provide the key value using another software program.
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Encryption technologies are also used to provide
“digital signatures” where a message is encrypted using the
user’s private key to which only the user has access. When
another user decrypts the message using the user’s public
key (in a public key-private key arrangement), the other
user is assured that the message is from the first user and

not an imposter.

A challenge of encryption technologies is that if the
encryption keys are compromised, a malevolent user can
decrypt software or create digital signatures that belong
to another user. Because encryption keys are used to
safeguard confidential information, their discovery by

malevolent users can be disastrous.

What is needed, therefore, is a system and method that
performs encryption functions, such as digital signatures,
encrypting files, and decrypting files and software, in a
way that does not compromise the user’s encryption keys.
What is further needed is a secondary processor that can
securely perform the encryption functions on behalf of
another processor, thus freeing the other processor to

perform more non-encryption tasks.
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SUMMARY

A system and method are provided to dedicate one or
more processors in a multiprocessing system to performing
encryption functions. When the system initializes, one of
the synergistic processing unit (SPU) processors 1is
configured to run in a secure mode wherein the local memory
included with the dedicated SPU is not shared with the
other processors. One or more encryption keys are stored
in the 1local memory during initialization. During
initialization, the SPUs receive nonvolatile data, such as
the encryption keys, from nonvolatile register space. This
information is made available to the SPU during
initialization before the SPUs local storage might be
mapped to a common memory map. In one embodiment, the
mapping is performed by another processing unit (PU) that

maps the shared SPUs’ local storage to a common memory map.

If the SPU runs in “shared” mode (mapping the local
memory to the common memory map), the nonvolatile register
space, including any encryption keys, are inaccessible to
that processor so that an application running on the PU
cannot read the encryption keys. It is possible to swap
out an SPU when it is in secure mode. If the PU forces the
SPU out of secure mode (i.e., in order to perform a switch)
then the hardware initialization process cleans the SPU
before its local storage is made accessible. The dedicated
SPU performing the encryption/decryption receives encrypted
data from an application running on the PU, decrypts it
using the encryption keys stored in its local storage, and
returns the results. In one embodiment, part of the

dedicated SPUs memory is shared and part is not shared.
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The non-shared portion is used to store the keys and the
encryption algorithm while the shared portion is used to
transfer encrypted/decrypted data to and from the other
processors. In another embodiment, the SPU’s local memory
is private and the SPU reads data to be acted upon from the
shared memory using DMA commands and stores the data in the
SPU’s local memory. When the encryptidn processing is
complete, the SPU uses a DMA command to write the results
back to the shared memory. In this manner, processes
running on other processors do not have access to
encryption keys and algorithms stored in the 1local memory.
In addition, in one embodiment, encryption keys are stored
in nonvolatile special registers that are made available to
the SPU when the SPU’s initialization has been
authenticated by an authentication process stored in read-

only memory (ROM).

The foregoing is a summary and thus contains, by
necessity, simplifications, generalizations, and omissions
of detail; consequently, those skilled in the art will
appreciate that the summary is illustrative only and is not
intended to be in any way limiting. Other aspects,
inventive features, and advantages of the present
invention, as defined solely by the claims, will become
apparent in the non-limiting detailed description set forth

below.
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BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and
its numerous objects, features, and advantages made
apparent to those skilled in the art by referencing the
accompanying drawings. The use of the same reference
symbols in different drawings indicates similar or

identical items.

Figure 1 illustrates -the overall architecture of a

computer network in accordance with the present invention;

Figure 2 is a diagram illustrating the structure of a
processing unit (PU) in accordance with the present

invention;

Figure 3 is a diagram illustrating the structure of a
broadband engine (BE) in accordance with the present

invention;

Figure 4 is a diagram illustrating the structure of an
synergistic processing unit (SPU) in accordance with the

present invention;

Figure 5 is a diagram illustrating the structure of a
processing unit, visualizer (VS) and an optical interface

in accordance with the present invention;

Figure 6 is a diagram illustrating one combination of

processing units in accordance with the present invention;

Figure 7 illustrates another combination of processing

units in accordance with the present invention;

Figure 8 illustrates yet another combination of

processing units in accordance with the present invention;
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Figure 9 illustrates yet another combination of

processing units in accordance with the present invention;

Figure 10 illustrates yet another combination of

processing units in accordance with the present invention;

5 Figure 11A illustrates the integration of optical
interfaces within a chip package in accordance with the

present invention;

Figure 11B is a diagram of one configuration of

processors using the optical interfaces of Figure 11A;

10 Figure 11C is a diagram of another configuration of

processors using the optical interfaces of Figure 1l1A;

Figure 12A illustrates the structure of a memory

system in accordance with the present invention;

Figure 12B illustrates the writing of data from a
15 first broadband engine to a second broadband engine in

accordance with the present invention;

Figure 13 is a diagram of the structure of a shared
memory for a processing unit in accordance with the present

invention;

20 Figure 14A illustrates one structure for a bank of the

memory shown in Figure 13;

Figure 14B illustrates another structure for a bank of

the memory shown in Figure 13;

Figure 15 illustrates a structure for a direct memory

25 access controller in accordance with the present invention;

Figure 16 illustrates an alternative structure for a
direct memory access controller in accordance with the

present invention;
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Figures 17-31 illustrate the operation of data

synchronization in accordance with the present invention;

Figure 32 is a three-state memory diagram illustrating
the various states of a memory location in accordance with

the data synchronization scheme of the-present invention;

Figure 33 illustrates the structure of a key control
table for a hardware sandbox in accordance with the present

invention;

Figure 34 illustrates a scheme for storing memory
access keys for a hardware sandbox in accordance with the

present invention;

Figure 35 illustrates the structure of a memory access
control table for a hardware sandbox in accordance with the

present invention;

Figure 36 is a flow diagram of the steps for accessing
a memory sandbox using the key control table of Figure 33

and the memory access control table of Figure 35;

Figure 37 illustrates the structure of a software cell

in accordance with the present invention;

Figure 38 is a flow diagram of the steps for issuing
remote procedure calls to SPUs in accordance with the

present invention;

Figure 39 illustrates the structure of a dedicated
pipeline for processing streaming data in accordance with

the present invention;

Figure 40 is a flow diagram of the steps performed by
the dedicated pipeline of Figure 39 in the processing of

streaming data in accordance with the present invention;
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Figure 41 illustrates an alternative structure for a
dedicated pipeline for the processing of streaming data in

accordance with the present invention;

Figure 42 illustrates a scheme for an absolute timer
for coordinating the parallel processing of applications

and data by SPUs in accordance with the present invention;

Figure 43 is a system diagram showing an SPU acting as

a virtual device;

Figures 44-46 show various device code modules being

loaded into the local memory of the SPU;

Figure 47 is a flowchart showing the initialization of
a computer system using device code adapted to be executed

by an SPU;

Figure 48 is a flowchart showing steps taken in

managing multiple device code files by an SPU;

Figure 49 is a diagram showing data structures used to
manage multiple virtual devices that can be performed by

one of the SPUs;

Figure 50 is a flowchart showing steps taken by a
process in calling a virtual device executed by one of the

SPUs;

Figure 51 is a flowchart showing steps taken by non-
dedicated SPUs in identifying and performing requested

virtual device tasks;

Figure 52 is a flowchart showing steps taken by a

dedicated SPU in performing requested virtual device tasks;

Figure 53 is a diagram showing a task gqueue manager
being used to facilitate the handling of virtual device

tasks by SPUs;
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Figure 54 is a flowchart showing steps taken by the
task queue manager in facilitating the handling of device

tasks by SPUs;

Figure 55 is a flowchart showing the task queue
manager notifying applications that previously requested

device requests;

Figure 56 is a flowchart showing steps taken by SPUs

being managed by the task queue manager;

Figure 57 is a system diagram showing the system
components and intercommunication involved in using one of

the SPUs as an isolated encryption device;

Figure 58 is a flowchart showing steps taken to
initialize one of the SPUs as an isolated encryption

device;

Figure 59 is a flowchart showing steps taken by an
encryption SPU in receiving and processing encryption
requests from other system components, such as processors

including other SPUs and PUs; and

Figure 60 is a block diagram illustrating a processing
element having a main processor and a plurality of secondary

processors sharing a system memory.
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DETAILED DESCRIPTION

The following is intended to provide a detailed
description of an example of the invention and should not
be taken to be limiting of the invention itself. Rather,
any number of variations may fall within the scope of the
invention which is defined in the claims following the

description.

The overall architecture for a computer system 101 in

accordance with the present invention is shown in Figure 1.

As illustrated in this figure, system 101 includes
network 104 to which is connected a plurality of computers
and computing devices. Network 104 can be a LAN, a global
network, such as the Internet, or any other computer

network.

The computers and computing devices connected to
network 104 (the network's "members") include, e.g., client
computers 106, server computers 108, personal digital
assistants (PDAs) 110, digital television (DTV) 112 and
other wired or wireless computers and computing devices.
The processors employed by the members of network 104 are
constructed from the same common computing module. These
processors also preferably all have the same ISA and
perform processing'in accordance with the same instruction
set. The number of modules included within any particular
processor depends upon the processing power required by

that processor.

For example, since servers 108 of system 101 perform

more processing of data and applications than clients 106,
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servers 108 contain more computing modules than clients
106. PDAs 110, on the other hand, perform the least amount
of processing. PDAs 110, therefore, contain the smallest
number of computing modules. DTV 112 performs a level of
processing between that of clients 106 and servers 108. DTV
112, therefore, contains a number of computing modules
between that of clients 106 and servers 108. As discussed
below, each computing module contains a processing
controller and a plurality of identical processing units
for performing parallel processing of the data and

applications transmitted over network 104.

This homogeneous configuration for system 101
facilitates adaptability, processing speed and processing
efficiency. Because each member of system 101 performs
processing using one or more (or some fraction) of the same
computing module, the particular computer or computing
device performing the actual processing of data and
applications is unimportant. The processing of a particular
application and data, moréover, can be shared among the
network's members. By uniquely identifying the cells

comprising the data and applications processed by system

101 throughout the system, the processing results can be

transmitted to the computer or computing device requesting
the processing regardless of where this processing
occurred. Because the modules performing this processing
have a common structure and employ a common ISA, the
computational burdens of an added layer of software to
achieve compatibility among the processors is avoided. This
architecture and programming model facilitates the
processing speed necessary to execute, e.g., real-time,

multimedia applications.
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To take further advantage of the processing speeds and
efficiencies facilitated by system 101, the data and
applications processed by this system are packaged into
uniquely identified, uniformly formatted software cells
102. Each software cell 102 contains, or can contain, both
applications and data. Each software cell also contains an
ID to globally identify the cell throughout network 104 and
system 101. This uniformity of structure for the software
cells, and the software cells' unique identification
throughout the network, facilitates the processing of
applications and data on any computer or computing device
of the network. For example, a client 106 may formulate a
software cell 102 but, because of the limited processing
capabilities of client 106, transmit this software cell to
a server 108 for processing. Software cells can migrate,
therefore, throughout network 104 for processing on the
basis of the availability of processing resources on the

network.

The homogeneous structure of processors and software
cells of system 101 also avoids many of the problems of
today's heterogeneous networks. For example, inefficient
programming models which seek to permit processing of
applications on any ISA using any instruction set, e.g.,
virtual machines such as the Java virtual machine, are
avoided. System 101, therefore, can implement broadband
processing far more effectively and efficiently than

today's networks.

The basic processing module for all members of network
104 is the processing unit (PU). Figure 2 illustrates the

structure of a PU. As shown in this figure, PE 201
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comprises a processing unit (PU) 203, a direct memory
access controller (DMAC) 205 and a plurality of synergistic
processing units (SPUs), namely, SPU 207, SPU 209, SPU 211,
SPU 213, SPU 215, SPU 217, SPU 219 and SPU 221. A local PE
bus 223 transmits data and applications among the SPUs,
DMAC 205 and PU 203. Local PE bus 223 can have, e.g., a
conventional architecture or be implemented as a packet
switch network. Implementation as a packet switch network,
while requiring more hardware, increases available

bandwidth.

PE 201 can be constructed using various methods for
implementing digital logic. PE 201 preferably is
constructed, however, as a single integrated circuit
employing a complementary metal oxide semiconductor (CMOS)
on a silicon substrate. Alternative materials for
substrates include gallium arsinide, gallium aluminum
arsinide and other so-called III-B compounds employing a
wide variety of dopants. PE 201 also could be implemented
using superconducting material, e.g., rapid single-flux-

quantum (RSFQ) logic.

PE 201 is closely associated with a dynamic random
access memory (DRAM) 225 through a high bandwidth memory
connection 227. DRAM 225 functions as the main memory for
PE 201. Although a DRAM 225 preferably is a dynamic random
access memory, DRAM 225 could be implemented using other
means, e.g., as a static random access memory (SRAM), a
magnetic random access memory (MRAM), an optical memory or
a holographic memory. DMAC 205 facilitates the transfer of
data between DRAM 225 and the SPUs and PU of PE 201. As
further discussed below} DMAC 205 designates for each SPU
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an exclusive area in DRAM 225 into which only the SPU can
write data and from which only the SPU can read data. This

exclusive area is designated a "sandbox."

PU 203 can be, e.g., a standard processor capable of
stand-alone processing of data and applications. In
operation, PU 203 schedules and orchestrates the prdcessing
of data and applications by the SPUs. The SPUs preferably
are single instruction, multiple data (SIMD) processors.
Under the control of PU 203, the SPUs perform the
processing of these data and applications in a parallel and
independent manner. DMAC 205 controls accesses by PU 203
and the SPUs to the data and applications stored in the
shared DRAM 225. Although PE 201 preferably includes eight
SPUs, a greater or lesser number of SPUs can be employed in
a PU depending upon the processing power required. Also, a
number of PUs, such as PE 201, may be joined or packaged

together to provide enhanced processing power.

For example, as shown in Figure 3, four PUs may be
packaged or joined together, e.g., within one or more chip
packages, to form a single processor for a member of
network 104. This configuration is designated a broadband
engine (BE). As shown in Figure 3, BE 301 contains four
PUs, namely, PE 303, PE 305, PE 307 and PE 309.
Communications among these PUs are over BE bus 311. Broad
bandwidth memory connection 313 provides communication
between shared DRAM 315 and these PUs. In lieu of BE bus
311, communications among the PUs of BE 301 can occur

through DRAM 315 and this memory connection.

Input/output (I/O) interface 317 and external bus 319

provide communications between broadband engine 301 and the
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other members of network 104. Each PU of BE 301 performs
processing of data and applications in a parallel and
independent manner analogous to the parallel and
independent processing of applications and data performed

by the SPUs of a PU.

Figure 4 illustrates the structure of an SPU. SPU 402
includes local memory 406, registers 410, four floating
point units 412 and four integer units 414. Again, however,
depending upon the processing power required, a greater or
lesser number of floating points units 412 and integer
units 414 can be employed. In a preferred embodiment, local
memory 406 contains 128 kilobytes of storage, and the
capacity of registers 410 is 128.times.128 bits. Floating
point units 412 preferably operate at a speed of 32 billion
floating point operations per second (32 GFLOPS), and
integer units 414 preferably operate at a speed of 32

billion operations per second (32 GOPS).

Local memory 406 is not a cache memory. Local memory
406 is preferably constructed as an SRAM. Cache coherency
support for an SPU is unnecessary. A PU may require cache
coherency support for direct memory accesses initiated by
the PU. Cache coherency support is not required, however,
for direct memory accesses initiated by an SPU or for

accesses from and to external devices.

SPU 402 further includes bus 404 for transmitting
applications and data to and from the SPU. In a preferred
embodiment, this bus is 1,024 bits wide. SPU 402 further
includes internal busses 408, 420 and 418. In a preferred
embodiment, bus 408 has a width of 256 bits and provides

communications between local memory 406 and registers 410.
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Busses 420 and 418 provide communications between,
respectively, registers 410 and floating point units 412,

and registers 410 and integer units 414. In a preferred

embodiment, the width of busses 418 and 420 from registers

410 to the floating point or integer units is 384 bits, and
the width of busses 418 and 420 from the floating point or
integer units to registers 410 is 128 bits. The larger
width of these busses from registers 410 to the floating
point or integer units than from these units to registers
410 accommodates the larger data flow from registers 410
during processing. A maximum of three words are needed for
each calculation. The result of each calculation, however,

normally is only one word.

Figures. 5-10 further illustrate the modular structure
of the processors of the members of network 104. For
example, as shown in Figure 5, a processor may comprise a
single PU 502. As discussed above, this PU typically
comprises a PU, DMAC and eight SPUs. Each SPU includes
local storage (LS) . On the other hand, a processor may
comprise the structure of visualizer (VS) 505. As shown in
Figure 5, VS 505 comprises PU 512, DMAC 514 and four SPUs,
namely, SPU 516, SPU 518, SPU 520 and SPU 522. The space
within the chip package normally occupied by the other four
SPUs of a PU is occupied in this case by pixel engine 508,
image cache 510 and cathode ray tube controller (CRTC) 504.
Depending upon the speed of communications required for PU
502 or VS 505, optical interface 506 also may be included
on the chip package.

Using this standardized, modular structure, numerous

other variations of processors can be constructed easily
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and efficiently. For example, the processor shown in Figure
6 comprises two chip packages, namely, chip package 602
comprising a BE and chip package 604 comprising four VSs.
Input/output (I/0) 606 provides an interface between the BE
of chip package 602 and network 104. Bus 608 provides
communications between chip package 602 and chip package
604. Input output processor (IOP) 610 controls the flow of
data into and out of I/O 606. I/O 606 may be fabricated as
an application specific integrated circuit (ASIC). The

output from the VSs is video signal 612.

Figure 7 illustrates a chip package for a BE 702 with
two optical interfaces 704 and 706 for providing ultra high
speed communications to the other members of network 104
(or other chip packages locally connected). BE 702 can

function as, e.g., a server on network 104.

The chip package of Figure 8 comprises two PEs 802 and
804 and two VSs 806 and 808. An I/0 810 provides an
interface between the chip package and network 104. The
output from the chip package is a video signal. This
configuration may function as, e.g., a graphics work

station.

Figure 9 illustrates yet another configuration. This
configuration contains one-half of the processing power of
the configuration illustrated in Figure 8. Instead of two
PUs, one PE 902 is provided, and instead of two VSs, one VS
904 is provided. I/O 906 has one-half the bandwidth of the
I/0 illustrated in Figure 8. Such a processor also may

function, however, as a graphics work station.
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A final configuration is shown in Figure 10. This
processor consists of only a single VS 1002 and an I/O

1004. This configuration may function as, e.g., a PDA.

Figure 11A illustrates the integration of optical
interfaces into a chip package of a processor of network
104. These optical interfaces convert optical signals to
electrical signals and electrical signals to optical
signals and can be constructed from a variety of materials
including, e.g., gallium arsinide, aluminum gallium
arsinide, germanium and other elements or compounds. As
shown in this figure, optical interfaces 1104 and 1106 are
fabricated on the chip package of BE 1102. BE bus 1108
provides communication among the PUs of BE 1102, namely, PE
1110, PE 1112, PE 1114, PE 1116, and these optical
interfaces. Optical interface 1104 includes two ports,
namely, port 1118 and port 1120, and optical interface 1106
also includes two ports, namely, port 1122 and port 1124,
Ports 1118, 1120, 1122 and 1124 are connected to,
respectively, optical wave guides 1126, 1128, 1130 and
1132. Optical signals are transmitted to and from BE 1102
through these optical wave guides via the ports of optical
interfaces 1104 and 1106.

plurality of BEs can be connected together in various
configurations using such optical wave guides and the four
optical ports of each BE. For example, as shown in Figure
11B, two or more BEs, e.g., BE 1152, BE 1154 and BE 1156,
can be connected serially through such optical ports. In
this example, optical interface 1166 of BE 1152 is
connected through its optical ports to the optical ports of

optical interface 1160 of BE 1154. In a similar manner, the
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optical ports of optical interface 1162 on BE 1154 are
connected to the optical ports of optical interface 1164 of

BE 1156.

A matrix configuration is illustrated in Figure 11C.
In this configuration, the optical interface of each BE is
connected to two other BEs. As shown in this figure, one of
the optical ports of optical interface 1188 of BE 1172 is
connected to an optical port of optical interface 1182 of
BE 1176. The other optical port of optical interface 1188
is connected to an optical port of optical interface 1184
of BE 1178. In a similar manner, one optical port of
optical interface 1190 of BE 1174 is connected to the other
optical port of optical interface 1184 of BE 1178. The
other optical port of optical interface 1190 is connected
to an optical port of optical interface 1186 of BE 1180.
This matrix configuration can be extended in a similar

manner to other BEs.

Using either a serial configuration or a matrix
configuration, a processor for network 104 can be
constructed of any desired size and power. Of course,
additional ports can be added to the optical interfaces of
the BEs, or to processors having a greater or lesser number

of PUs than a BE, to form other configurations.

Figure 12A illustrates the control system and
structure for the DRAM of a BE. A similar control system
and structure is employed in processors having other sizes
and containing more or less PUs. As shown in this figure, a
cross-bar switch connects each DMAC 1210 of the four PUs
comprising BE 1201 to eight bank controls 1206. Each bank
control 1206 controls eight banks 1208 (only four are shown
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in the figure) of DRAM 1204. DRAM 1204, therefore,
comprises a total of sixty-four banks. In a preferred
embodiment, DRAM 1204 has a capacity of 64 megabytes, and
each bank has a capacity of 1 megabyte. The smallest
addressable unit within each bank, in this preferred

embodiment, is a block of 1024 bits.

BE 1201 also includes switch unit 1212. Switch unit
1212 enables other SPUs on BEs closely coupled to BE 1201
to access DRAM 1204. A second BE, therefore, can be closely
coupled to a first BE, and each SPU of each BE can address
twice the number of memory locations normally accessible to
an SPU. The direct reading or writing of data from or to
the DRAM of a first BE from or to the DRAM of a second BE

can occur through a switch unit such as switch unit 1212.

For example, as shown in Figure 12B, to accomplish
such writing, the SPU of a first BE, e.g., SPU 1220 of BE
1222, issues a write command to a memory location of a DRAM
of a second BE, e.g., DRAM 1228 of BE 1226 (rather than, as
in the usual case, to DRAM 1224 of BE 1222). DMAC 1230 of
BE 1222 sends the write command through cross-bar switch
1221 to bank control 1234, and bank'control 1234 transmits
the command to an external port 1232 connected to bank
control 1234. DMAC 1238 of BE 1226 receives the write
command and transfers this command to switch unit 1240 of
BE 1226. Switch unit 1240 identifies the DRAM address
contained in the write command and sends the data for
storage in this address through bank control 1242 of BE
1226 to bank 1244 of DRAM 1228. Switch unit 1240,
therefore, enables both DRAM 1224 and DRAM 1228 to function
as a single memory space for the SPUs of BE 1226.
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Figure 13 shows the configuration of the sixty-four
banks of a DRAM. These banks are arranged into eight rows,
namely, rows 1302, 1304, 1306, 1308, 1310, 1312, 1314 and
1316 and eight columns, namely, columns 1320, 1322, 1324,
1326, 1328, 1330, 1332 and 1334. Each row is controlled by
a bank controller. Each bank controller, therefore,

controls eight megabytes of memory.

Figures. 14A and 14B illustrate different
configurations for storing and accessing the smallest
addressable memory unit of a DRAM, e.g., a block of 1024
bits. In Figure 14A, DMAC 1402 stores in a single bank 1404
eight 1024 bit blocks 1406. In Figure 14B, on the other
hand, while DMAC 1412 reads and writes blocks of data
containing 1024 bits, these blocks are interleaved between
two banks, namely, bank 1414 and bank 1416. Each of these
banks, therefore, contains sixteen blocks of data, and each
block of data contains 512 bits. This interleaving can
facilitate faster accessing of the DRAM and is useful in

the processing of certain applications.

Figure 15 illustrates the architecture for a DMAC 1504
within a PE. As illustrated in this figure, the structural
hardware comprising DMAC 1506 is distributed throughout the
PE such that each SPU 1502 has direct access to a
structural node 1504 of DMAC 1506. Each node executes the
logic appropriate for memory accésses by the SPU to which

the node has direct access.

Figure 16 shows an alternative embodiment of the DMAC,
namely, a non-distributed architecture. In this case, the
structural hardware of DMAC 1606 is centralized. SPUs 1602
and PU 1604 communicate with DMAC 1606 via local PE bus
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1607. DMAC 1606 is connected through a cross-bar switch to
a bus 1608. Bus 1608 is connected to DRAM 1610.

As discussed above, all of the multiple SPUs of a PU
can independently access data in the shared DRAM. As a
result, a first SPU could be operating upon particular data
in its local storage at a time during which a second SPU
requests these data. If the data were provided to the
second SPU at that time from the shared DRAM, the data
could be invalid because of the first SPU's ongoing
processing which could change the data's value. If the
second processor received the data from the shared DRAM at
that time, therefore, the second processor could generate
an erroneous result. For example, the data could be a
specific value for a global variable. If the first
processor changed that value during its processing, the
second processor would receive an outdated value. A scheme
is necessary, therefore, to synchronize the SPUs' reading
and writing of data from and to memory locations within the
shared DRAM. This scheme must prevent the reading of data
from a memory location upon which another SPU currently is
operating in its local storage and, therefore, which are
not current, and the writing of data into a memory location

storing current data.

To overcome these problems, for each addressable
memory location of the DRAM, an additional segment of
memory is allocated in the DRAM for storing status
information relating to the data stored in the memory
location. This status information includes a full/empty
(F/E) bit, the identification of an SPU (SPU ID) requesting

data from the memory location and the address of the SPU's
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local storage (LS address) to which the requested data
should be read. An addressable memory location of the DRAM
can be of any size. In a preferred embodiment, this size is

1024 bits.

The setting of the F/E bit to 1 indicates that the
data stored in the associated memory location are current.
The setting of the F/E bit to 0, on the other hand,
indicates that the data stored in the associated memory
location are not current. If an SPU requests the data when
this bit is set to 0, the SPU is prevented from immediately
reading the data. In this case, an SPU ID identifying the
SPU requesting the data, and an LS address identifying the
memory location within the local storage of this SPU to
which the data are to be read when the data become current,

are entered into the additional memory segment.

An additional memory segment also is allocated for
each memory location within the local storage of the SPUs.
This additional memory segment stores one bit, designated
the "busy bit." The busy bit is used to reserve the
associated LS memory location for the storage of specific
data to be retrieved from the DRAM. If the busy bit is set
to 1 for a particular memory location in local storage, the
SPU can use this memory location only for the writing of
these specific data. On the other hand, if the busy bit is
set to 0 for a particular memory location in local storage,
the SPU can use this memory location for the writing of any

data.

Examples of the manner in which the F/E bit, the SPU

ID, the LS address and the busy bit are used to synchronize
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the reading and writing of data from and to the shared DRAM
of a PU are illustrated in Figures. 17-31.

As shown in Figure 17, one or more PUs, e.g., PE 1720,
interact with DRAM 1702. PE 1720 includes SPU 1722 and SPU
1740. SPU 1722 includes control logic 1724, and SPU 1740
includes control logic 1742. SPU 1722 also includes local
storage 1726. This local storage includes a plurality of
addressable memory locations 1728. SPU 1740 includes local
storage 1744, and this local storage also includes a
plurality of addressable memory locations 1746. All of
these addressable memory locations preferably are 1024 bits

in size.

An additional segment of memory is associated with
each LS addressable memory location. For example, memory
segments 1729 and 1734 are associated with, respectively,
local memory locations 1731 and 1732, and memory segment
1752 is associated with local memory location 1750. A "busy
bit," as discussed above, is stored in each of these
additional memory segments. Local memory location 1732 is
shown with several Xs to indicate that this location

contains data.

DRAM 1702 contains a plurality of addressable memory
locations 1704, including memory locations 1706 and 1708.
These memory locations preferably also are 1024 bits in
size. An additional segment of memory also is associated
with each of these memory locations. For example,
additional memory segment 1760 is associated with memory
location 1706, and additional memory segment 1762 is
associated with memory location 1708. Status information

relating to the data stored in each memory location is
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stored in the memory segment associated with the memory
location. This status information includes, as discussed
above, the F/E bit, the SPU ID and the LS address. For
example, for memory location 1708, this status information

includes F/E bit 1712, SPU ID 1714 and LS address 1716.

Using the status information and the busy bit, the
synchronized reading and writing of data from and to the
shared DRAM among the SPUs of a PU, or a group of PUs, can

be achieved.

Figure 18 illustrates the initiation of the
synchronized writing of data from LS memory location 1732
of SPU 1722 to memory location 1708 of DRAM 1702. Control
1724 of SPU 1722 initiates the synchronized writing of
these data. Since memory location 1708 is empty, F/E bit
1712 is set to 0. As a result, the data in LS location 1732
can be written into memory location 1708. If this bit were
set to 1 to indicate that memory location 1708 is full and
contains current, valid data, on the other hand, control
1722 would receive an error message and be prohibited from

writing data into this memory location.

The result of the successful synchronized writing of
the data into memory location 1708 is shown in Figure 19.
The written data are stored in memory location 1708, and
F/E bit 1712 is set to 1. This setting indicates that
memory location 1708 is full and that the data in this

memory location are current and valid.

Figure 20 illustrates the initiation of the
synchronized reading of data from memory location 1708 of

DRAM 1702 to LS memory location 1750 of local storage 1744.
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To initiate this reading, the busy bit in memory segment
1752 of LS memory location 1750 is set to 1 to reserve this
memory location for these data. The setting of this busy
bit to 1 prevents SPU 1740 from storing other data in this

memory location.

As shown in Figure 21, control logic 1742 next issues
a synchronize read command for memory location 1708 of DRAM
1702. Since F/E bit 1712 associated with this memory
location is set to 1, the data stored in memory location
1708 are considered current and valid. As a result, in
preparation for transferring the data from memory location
1708 to LS memory location 1750, F/E bit 1712 is set to O.
This setting is shown in Figure 22. The setting of this bit
to 0 indicates that, following the reading of these data,

the data in memory location 1708 will be invalid.

As shown in Figure 23, the data within memory location
1708 next are read from memory location 1708 to LS memory
location 1750. Figure 24 shows the final state. A copy of
the data in memory location 1708 is stored in LS memory
location 1750. F/E bit 1712 is set to 0 to indicate that
the data in memory location 1708 are invalid. This
invalidity is the result of alterations to these data to be
made by SPU 1740. The busy bit in memory segment 1752 also
is set to 0. This setting indicates that LS memory location
1750 now is available to SPU 1740 for any purpose, i.e.,
this LS memory location no longer is in a reserved state
waiting for the receipt of specific data. LS memory
location 1750, therefore, now can be accessed by SPU 1740

for any purpose.
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Figures. 25-31 illustrate the synchronized reading of
data from a memory location of DRAM 1702, e.g., memory
location 1708, to an LS memory location of an SPU's local
storage, e.g., LS memory location 1752 of local storage
1744, when the F/E bit for the memory location of DRAM 1702
is set to 0 to indicate that the data in this memory
location are not current or valid. As shown in Figure 25,
to initiate this transfer, the busy bit in memory segment
1752 of LS memory location 1750 is set to 1 to reserve this
LS memory location for this transfer of data. As shown in
Figure 26, control logic 1742 next issues a synchronize
read command for memory location 1708 of DRAM 1702. Since
the F/E bit associated with this memory location, F/E bit
1712, is set to 0, the data stored in memory location 1708
are invalid. As a result, a signal is transmitted to
control logic 1742 to block the immediate reading of data

from this memory location.

As shown in Figure 27, the SPU ID 1714 and LS address
1716 for this read command next are written into memory
segment 1762. In this case, the SPU ID for SPU 1740 and the
LS memory location for LS memory location 1750 are written
into memory segment 1762. When the data within memory
location 1708 become current, therefore, this SPU ID and LS
memory location are used for determining the location to

which the current data are to be transmitted.

The data in memory location 1708 become valid and
current when an SPU writes data into this memory location.
The synchronized writing of data into memory location 1708
from, e.g., memory location 1732 of SPU 1722, is

illustrated in Figure 28. This synchronized writing of
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these data is permitted because F/E bit 1712 for this

memory location is set to 0.

As shown in Figure 29, following this writing, the
data in memory location 1708 become current and valid. SPU
ID 1714 and LS address 1716 from memory segment 1762,
therefore, immediately are read from memory segment 1762,
and this information then is deleted from this segment. F/E
bit 1712 also is set to 0 in anticipation of the immediate
reading of the data in memory location 1708. As shown in
Figure 30, upon reading SPU ID 1714 and LS address 1716,
this information immediately is used for reading the valid
data in memory location 1708 to LS memory location 1750 of
SPU 1740. The final state is shown in Figure 31. This
figure shows the valid data from memory location 1708
copied to memory location 1750, the busy bit in memory
segment 1752 set to 0 and F/E bit 1712 in memory segment
1762 set to 0. The setting of this busy bit to 0 enables LS
memory location 1750 now to be accessed by SPU 1740 for any
purpose. The setting of this F/E bit to 0 indicates that
the data in memory location 1708 no longer are current and

valid.

Figure 32 summarizes the operations described above
and the various states of a memory location of the DRAM
based upon the states of the F/E bit, the SPU ID and the LS
address stored in the memory segment corresponding to the
memory location. The memory location can have three states.
These three states are an empty state 3280 in which the F/E
bit is set to 0 and no information is provided for the SPU
ID or the LS address, a full state 3282 in which the F/E

bit is set to 1 and no information is provided for the SPU
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ID or LS address and a blocking state 3284 in which the F/E
bit is set to 0 and information is provided for the SPU ID

and LS address.

As shown in this figure, in empty state 3280, a
synchronized writing operation is permitted and results in
a transition to full state 3282. A synchronized reading
operation, however, results in a transition to the blocking
state 3284 because the data in the memory location, when

the memory location is in the empty state, are not current.

In full state 3282, a synchronized reading operation
is permitted and results in a transition to empty state
3280. On the other hand, a synchronized writing operation
in full state 3282 is prohibited to prevent overwriting of
valid data. If such a writing operation is attempted in
this state, no state change occurs and an error message is

transmitted to the SPU's corresponding control logic.

In blocking state 3284, the synchronized writing of
data into the memory location is permitted and results in a
transition to empty state 3280. On the other hand, a
synchronized reading operation in blocking state 3284 is
prohibited to prevent a conflict with the earlier
synchronized reading operation which resulted in this
state. If a synchronized reading operation is attempted in
blocking state 3284, no state change occurs and an error
message is transmitted to the SPU's corresponding control

logic.

The scheme described above for the synchronized
reading and writing of data from and to the shared DRAM

also can be used for eliminating the computational
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resources normally dedicated by a processor for reading
data from, and writing data to, external devices. This
input/output (I/0) function could be performed by a PU.
However, using a modification of this synchronization
scheme, an SPU running an appropriate program can perform
this function. For example, using this scheme, a PU
receiving an interrupt request for the transmission of data
from an I/0 interface initiated by an external device can
delegate the handling of this request to this SPU. The SPU
then issues a synchronize write command to the I/0
interface. This interface in turn signals the external
device that data now can be written into the DRAM. The SPU
next issues a synchronize read command to the DRAM to set
the DRAM's relevant memory space into a blocking state. The
SPU also sets to 1 the busy bits for the memory locations
of the SPU's local storage needed to receive the data. In
the blocking state, the additional memory segments
associated with the DRAM's relevant memory space contain
the SPU's ID and the address of the relevant memory
locations of the SPU's local storage. The external device
next issues a synchronize write command to write the data
directly to the DRAM's relevant memory space. Since this
memory space is in the blocking state, the data are
immediately read out of this space into the memory
locations of the SPU's local storage identified in the
additional memory segments. The busy bits for these memory
locations then are set to 0. When the external device
completes writing of the data, the SPU issues a signal to

the PU that the transmission is complete.

Using this scheme, therefore, data transfers from

external devices can be processed with minimal
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computational load on the PU. The SPU delegated this
function, however, should be able to issue an interrupt
request to the PU, and the external device should have

direct access to the DRAM.

The DRAM of each PU includes a plurality of
"sandboxes." A sandbox defines an area of the shared DRAM
beyond which a particular SPU, or set of SPUs, cannot read
or write data. These sandboxes provide security against the
corruption of data being processed by one SPU by data being
processed by another SPU. These sandboxes also permit the
downloading of software cells from network 104 into a
particular sandbox without the possibility of the software
cell corrupting data throughout the DRAM. In the present
invention, the sandboxes are implemented in the hardware of
the DRAMs and DMACs. By implementing these sandboxes in
this hardware rather than in software, advantages in speed

and security are obtained.

The PU of a PU controls the sandboxes assigned to the
SPUs. Since the PU normally operates only trusted programs,
such as an operating system, this scheme does not
jeopardize security. In accordance with this scheme, the PU
builds and maintains a key control table. This key control
table is illustrated in Figure 33. As shown in this figure,
each entry in key control table 3302 contains an
identification (ID) 3304 for an SPU, an SPU key 3306 for
that SPU and a key mask 3308. The use of this key mask is
explained below. Key control table 3302 preferably is
stored in a relatively fast memory, such as a static random
access memory (SRAM), and is associated with the DMAC. The

entries in key control table 3302 are controlled by the PU.
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When an SPU requests the writing of data to, or the reading
of data from, a particular storage location of the DRAM,
the DMAC evaluates the SPU key 3306 assigned to that SPU in
key control table 3302 against a memory access key

associated with that storage location.

As shown in Figure 34, a dedicated memory segment 3410
is assigned to each addressable storage location 3406 of a
DRAM 3402. A memory access key 3412 for the storage
location is stored in this dedicated memory segment. As
discussed above, a further additional dedicated memory
segment 3408, also associated with each addressable storage
location 3406, stores synchronization information for
writing data to, and reading data from, the storage-

location.

In operation, an SPU issues a DMA command to the DMAC.
This command includes the address of a storage location
3406 of DRAM 3402. Before executing this command, the DMAC
looks up the requesting SPU's key 3306 in key control table
3302 using the SPU's ID 3304. The DMAC then compares the
SPU key 3306 of the requesting SPU to the memory access key
3412 stored in the dedicated memory segment 3410 associated
with the storage location of the DRAM to which the SPU
seeks access. If the two keys do not match, the DMA command
is not executed. On the other hand, if the two keys match,
the DMA command proceeds and the requested memory access is

executed.

An alternative embodiment is illustrated in Figure 35.
In this embodiment, the PU also maintains a memory access
control table 3502. Memory access control table 3502

contains an entry for each sandbox within the DRAM. In the
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particular example of Figure 35, the DRAM contains 64
sandboxes. Each entry in memory access control table 3502
contains an identification (ID) 3504 for a sandbox, a base
memory address 3506, a sandbox size 3508, a memory access
key 3510 and an access key mask 3512. Base memory address
3506 provides the address in the DRAM which starts a
particular memory sandbox. Sandbox size 3508 provides the
size of the sandbox and, therefore, the endpoint of the

particular sandbox.

Figure 36 is a flow diagram of the steps for executing
a DMA command using key control table 3302 and memory
access control table 3502. In step 3602, an SPU issues a
DMA command to the DMAC for access to a particular memory
location or locations within a sandbox. This command
includes a sandbox ID 3504 identifying the particular
sandbox for which access is requested. In step 3604, the
DMAC looks up the requesting SPU's key 3306 in key control
table 3302 using the SPU's ID 3304. In step 3606, the DMAC
uses the sandbox ID 3504 in the command to look up in
memory access control table 3502 the memory access key 3510
associated with that sandbox. In step 3608, the DMAC
compares the SPU key 3306 assigned to the requesting SPU to
the access key 3510 associated with the sandbox. In step
3610, a determination is made of whether the two keys
match. If the two keys do not match, the process moves to
step 3612 where the DMA command does not proceed and an
error message is sent to either the requesting SPU, the PU
or both. On the other hand, if at step 3610 the two keys
are found to match, the process proceeds to step 3614 where

the DMAC executes the DMA command.
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The key masks for the SPU keys and the memory access
keys provide greater flexibility to this system. A key mask
for a key converts a masked bit into a wildcard. For
example, if the key mask 3308 associated with an SPU key
3306 has its last two bits set to "mask," designated by,
e.g., setting these bits in key mask 3308 to 1, the SPU key
can be either a 1 or a 0 and still match the memory access
key. For example, the SPU key might be 1010. This SPU key
normally allows access only to a sandbox having an access
key of 1010. If the SPU key mask for this SPU key is set to
0001, however, then this SPU key can be used to gain access
to sandboxes having an access key of either 1010 or 1011.
Similarly, an access key 1010 with a mask set to 0001 can
be accessed by an SPU with an SPU key of either 1010 or
1011. Since both the SPU key mask and the memory key mask
can be used simultaneously, numerous variations of
accessibility by the SPUs to the sandboxes can be
established.

The present invention also provides a new programming
model for the processors of system 101. This programming
model employs software cells 102. These cells can be
transmitted to any processor on network 104 for processing.
This new programming model also utilizes the unique modular
architecture of system 101 and the processors of system

101.

Software cells are processed directly by the SPUs from
the SPU's local storage. The SPUs do not directly operate
on any data or programs in the DRAM. Data and programs in
the DRAM are read into the SPU's local storage before the

SPU processes these data and programs. The SPU's local
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storage, therefore, includes a program counter, stack and
other software elements for executing these programs. The
PU controls the SPUs by issuing direct memory access (DMA)

commands to the DMAC.

The structure of software cells 102 is illustrated in
Figure 37. As shown in this figure, a software cell, e.g.,
software cell 3702, contains routing information section
3704 and body 3706. The information contained in routing
information section 3704 is dependent upon the protocol of
network 104. Routing information section 3704 contains
header 3708, destination ID 3710, source ID 3712 and reply
ID 3714. The destination ID includes a network address.
Under the TCP/IP protocol, e.g., the network address is an
Internet protocol (IP) address. Destination ID 3710 further
includes the identity of the PU and SPU to which the cell
should be transmitted for processing. Source ID 3712
contains a network address and identifies the PU and SPU
from which the cell originated to enable the destination PU
and SPU to obtain additional information regarding the cell
if necessary. Reply ID 3714 contains a network address and
identifies the PU and SPU to which queries regarding the
cell, and the result of processing of the cell, should be

directed.

Cell body 3706 contains information independent of the
network's protocol. The exploded portion of Figure 37 shows
the details of cell body 3706. Header 3720 of cell body
3706 identifies the start of the cell body. Cell interface
3722 contains information necessary for the cell's

utilization. This information includes global unique ID
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3724, required SPUs 3726, sandbox size 3728 and previous
cell ID 3730.

Global unique ID 3724 uniquely identifies software
cell 3702 throughout network 104. Global unique ID 3724 is
generated on the basis of source ID 3712, e.g. the unique
identification of a PU or SPU within source ID 3712, and
the time and date of generation or transmission of'software
cell 3702. Required SPUs 3726 provides the minimum number
of SPUs required to execute the cell. Sandbox size 3728
provides the amount of protected memory in the required
SPUs' associated DRAM necessary to execute the cell.
Previous cell ID 3730 provides the identity of a previous
cell in a group of cells requiring sequential execution,

e.g., streaming data.

Implementation section 3732 contains the cell's core
information. This information includes DMA command list
3734, programs 3736 and data 3738. Programs 3736 contain
the programs to be run by the SPUs (called "spulets"),
e.g., SPU programs 3760 and 3762, and data 3738 contain the
data to be processed with these programs. DMA command list
3734 contains a series of DMA commands needed to start the
programs. These DMA commands include DMA commands 3740,
3750, 3755 and 3758. The PU issues these DMA commands to
the DMAC.

DMA command 3740 includes VID 3742. VID 3742 is the
virtual ID of an SPU which is mapped to a physical ID when
the DMA commands are issued. DMA command 3740 also includes
load command 3744 and address 3746. Load command 3744
directs the SPU to read particular information from the

DRAM into local storage. Address 3746 provides the virtual
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address in the DRAM containing this information. The
information can be, e.g., programs from programs section
3736, data from data section 3738 or other data. Finally,
DMA command 3740 includes local storage address 3748. This
address identifies the address in local storage where the
information should be loaded. DMA commands 3750 contain

similar information. Other DMA commands are also possible.

DMA command list 3734 also includes a series of kick
commands, e.g., kick commands 3755 and 3758. Kick commands
are commands issued by a PU to an SPU to initiate the
processing of a cell. DMA kick command 3755 includes
virtual SPU ID 3752, kick command 3754 and program counter
3756. Virtual SPU ID 3752 identifies the SPU to be kicked,
kick command 3754 provides the relevant kick command and
program counter 3756 provides the address for the program
counter for executing the program. DMA kick command 3758
provides similar information for the same SPU or another

SPU.

As noted, the PUs treat the SPUs as independent
processors, not co-processors. To control processing by the
SPUs, therefore, the PU uses commands analogous to remote
procedure calls. These commands are designated "SPU Remote
Procedure Calls" (SRPCs). A PU implements an SRPC by
issuing a series of DMA commands to the DMAC. The DMAC
loads the SPU program and its associated stack frame into
the local storage of an SPU. The PU then issues an initial

kick to the SPU to execute the SPU Program.

Figure 38 illustrates the steps of an SRPC for
executing an spulet. The steps performed by the PU in

initiating processing of the spulet by a designated SPU are
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shown in the first portion 3802 of Figure 38, and the steps
performed by the designated SPU in processing the spulet

are shown in the second portion 3804 of Figure 38.

In step 3810, the PU evaluates the spulet and then
designates an SPU for processing the spulet. In step 3812,
the PU allocates space in the DRAM for executing the spulet
by issuing a DMA command to the DMAC to set memory access
keys for the necessary sandbox or sandboxes. In step 3814,
the PU enables an interrupt request for the designated SPU
to signal completion of the spulet. In step 3818, the PU
issues a DMA command to the DMAC to load the spulet from
the DRAM to the local storage of the SPU. In step 3820, the
DMA command is executed, and the spulet is read from the
DRAM to the SPU's local storage. In step 3822, the PU
issues a DMA command to the DMAC to load the stack frame
associated with the spulet from the DRAM to the SPU's local
storage. In step 3823, the DMA command is executed, and the
stack frame is read from the DRAM to the SPU's local
storage. In step 3824, the PU issues a DMA command for the
DMAC to assign a key to the SPU to allow the SPU to read
and write data from and to the hardware sandbox or
sandboxes designated in step 3812. In step 3826, the DMAC
updates the key control table (KTAB) with the key assigned
to the SPU. In step 3828, the PU issues a DMA command
"kick" to the SPU to start processing of the program. Other
DMA commands may be issued by the PU in the execution of a

particular SRPC depending upon the particular spulet.

As indicated above, second portion 3804 of Figure 38
illustrates the steps performed by the SPU in executing the
spulet. In step 3830, the SPU begins to execute the spulet
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in response to the kick command issued at step 3828. In
step 3832, the SPU, at the direction of the spulet,
evaluates the spulet's associated stack frame. In step
3834, the SPU issues multiple DMA commands to the DMAC to
load data designated as needed by the stack frame from the
DRAM to the SPU's local storage. In step 3836, these DMA
commands are executed, and the data are read from the DRAM
to the SPU's local storage. In step 3838, the SPU executes
the spulet and generates a result. In step 3840, the SPU
issues a DMA command to the DMAC to store the result in the
DRAM. In step 3842, the DMA command is executed and the
result of the spulet is written from the SPU's local
storage to the DRAM. In step 3844, the SPU issues an
interrupt request to the PU to signal that the SRPC has

been completed.

‘The ability of SPUs to perform tasks independently
under the direction of a PU enables a PU to dedicate a
group of SPUs, and the memory resources associated with a
group of SPUs, to performing extended tasks. For example, a
PU can dedicate one or more SPUs, and a group of memory
sandboxes associated with these one or more SPUs, to
receiving data transmitted over network 104 over an
extended period and to directing the data received during
this period to one or more other SPUs and their associated
memory sandboxes for further processing. This ability is
particularly advantageous to processing streaming data
transmitted over network 104, e.g., streaming MPEG or
streaming ATRAC audio or video data. A PU can dedicate one
or more SPUs and their associated memory sandboxes to
receiving these data and one or more other SPUs and their

associated memory sandboxes to decompressing and further
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processing these data. In other words, the PU can establish
a dedicated pipeline relationship among a group of SPUs and

their associated memory sandboxes for processing such data.

In order for such processing to be performed
efficiently, however, the pipeline's dedicated SPUs and
memory sandboxes should remain dedicated to the pipeline
during periods in which processing of spulets comprising
the data stream does not occur. In other words, the
dedicated SPUs and their associated sandboxes should be
placed in a reserved state during these periods. The
reservation of an SPU and its associated memory sandbox or
sandboxes upon completion of processing of an spulet is
called a "resident termination." A resident termination

occurs in response to an instruction from a PU.

Figures. 39, 40A and 40B illustrate the establishment
of a dedicated pipeline structure comprising a group of
SPUs and their associated sandboxes for the processing of
streaming data, e.g., streaming MPEG data. As shown in
Figure 39, the components of this pipeline structure
include PE 3902 and DRAM 3918. PE 3902 includes PU 3904,
DMAC 3906 and a plurality of SPUs, including SPU 3908, SPU
3910 and SPU 3912. Communications among PU 3904, DMAC 3906
and these SPUs occur through PE bus 3914. Wide bandwidth
bus 3916 connects DMAC 3906 to DRAM 3918. DRAM 3918
includes a plurality of sandboxes, e.g., sandbox 3920,

sandbox 3922, sandbox 3924 and sandbox 3926.

Figure 40A illustrates the steps for establishing the
dedicated pipeline. In step 4010, PU 3904 assigns SPU 3908
to process a network spulet. A network spulet comprises a

program for processing the network protocol of network 104.
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In this case, this protocol is the Transmission Control
Protocol/Internet Protocol (TCP/IP). TCP/IP data packets
conforming to this protocol are transmitted over network
104. Upon receipt, SPU 3908 processes these packets and
assembles the data in the packets into software cells 102.
In step 4012, PU 3904 instructs SPU 3908 to perform
resident terminations upon the completion of the processing
of the network spulet. In step 4014, PU 3904 assigns PUs
3910 and 3912 to process MPEG spulets. In step 4015, PU
3904 instructs SPUs 3910 and 3912 also to perform resident
terminations upon the completion of the processing of the
MPEG spulets. In step 4016, PU 3904 designates sandbox 3920
as a source sandbox for access by SPU 3908 and SPU 3910. In
step 4018, PU 3904 designates sandbox 3922 as a destination
sandbox for access by SPU 3910. In step 4020, PU 3904
designates sandbox 3924 as a source sandbox for access by
SPU 3908 and SPU 3912. In step 4022, PU 3904 designates
sandbox 3926 as a destination sandbox for access by SPU
3912. In step 4024, SPU 3910 and SPU 3912 send synchronize
read commands to blocks of memory within, respectively,
source sandbox 3920 and source sandbox 3924 to set these
blocks of memory into the blocking state. The process
finally moves to step 4028 where establishment of the
dedicated pipeline is complete and the resources dedicated
to the pipeline are reserved. SPUs 3908, 3910 and 3912 and
their associated sandboxes 3920, 3922, 3924 and 3926,

therefore, enter the reserved state.

Figure 40B illustrates the steps for processing
streaming MPEG data by this dedicated pipeline. In step
4030, SPU 3908, which processes the network spulet,

receives in its local storage TCP/IP data packets from
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network 104. In step 4032, SPU 3908 processes these TCP/IP
data packets and assembles the data within these packets
into software cells 102. In step 4034, SPU 3908 examines
header 3720 (Figurxe 37) of the software cells to determine
whether the cells contain MPEG data. If a cell does not
contain MPEG data, then, in step 4036, SPU 3908 transmits
the cell to a general purpose sandbox designated within
DRAM 3918 for processing other data by other SPUs not
included within the dedicated pipeline. SPU 3908 also

notifies PU 3904 of this transmission.

On the other hand, if a software cell contains MPEG
data, then, in step 4038, SPU 3908 examines previous cell
ID 3730 (Figure 37) of the cell to identify the MPEG data
stream to which the cell belongs. In step 4040, SPU 3908
chooses an SPU of the dedicated pipeline for processing of
the cell. In this case, SPU 3908 chooses SPU 3910 to
process these data. This choice is based upon previous cell
ID 3730 and load balancing factors. For example, if
previous cell ID 3730 indicates that the previous software
cell of the MPEG data stream to which the software cell
belongs was sent to SPU 3910 for processing, then the
present software cell normally also will be sent to SPU
3910 for processing. In step 4042, SPU 3908 issues a
synchronize write command to write the MPEG data to sandbox
3920. Since this sandbox previously was set to the blocking
state, the MPEG data, in step 4044, automatically is read
from sandbox 3920 to the local storage of SPU 3910. In step
4046, SPU 3910 processes the MPEG data in its local storage
to generate video data. In step 4048, SPU 3910 writes the
video data to sandbox 3922. In step 4050, SPU 3910 issues a

synchronize read command to sandbox 3920 to prepare this
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sandbox to receive additional MPEG data. In step 4052, SPU
3910 processes a resident termination. This processing
causes this SPU to enter the reserved state during which
the SPU waits to process additional MPEG data in the MPEG

data stream.

Other dedicated structures can be established among a
group of SPUs and their associated sandboxes for processing
other types of data. For example, as shown in Figure 41, a
dedicated group of SPUs, e.g., SPUs 4102, 4108 and 4114,
can be established for performing geometric transformations
upon three dimensional objects to generate two dimensional

display lists. These two dimensional display lists can be

further processed (rendered) by other SPUs to generate

pixel data. To perform this processing, sandboxes are
dedicated to SPUs 4102, 4108 and 4114 for storing the three
dimensional objects and the display lists resulting from
the processing of these objects. For example, source
sandboxes 4104, 4110 and 4116 are dedicated to storing the
three dimensional objects processed by, respectively, SPU
4102, SPU 4108 and SPU 4114. In a similar manner,
destination sandboxes 4106, 4112 and 4118 are dedicated to
storing the display lists resulting from the processing of
these three dimensional objects by, respectively, SPU 4102,
SPU 4108 and SPU 4114.

Coordinating SPU 4120 is dedicated to receiving in its
local storage the display lists from destination sandboxes
4106, 4112 and 4118. SPU 4120 arbitrates among these
display lists and sends them to other SPUs for the

rendering of pixel data.
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The processors of system 101 also employ an absolute
timer. The absolute timer provides a clock signal to the
SPUs and other elements of a PU which is both independent
of, and faster than, the clock signal driving these
elements. The use of this absolute timer is illustrated in

Figure 42.

As shown in this figure, the absolute timer
establishes a time budget for the performance of tasks by
the SPUs. This time budget provides a time for completing
these tasks which is longer than that necessary for the
SPUs' processing of the tasks. As a result, for each task,
there is, within the time budget, a busy period and a
standby period. All spulets are written for processing on
the basis of this time budget regardless of the SPUs'

actual processing time or speed.

For example, for a particular SPU of a PU, a
particular task may be performed during busy period 4202 of
time budget 4204. Since busy period 4202 is less than time
budget 4204, a standby period 4206 occurs during the time
budget. During this standby period, the SPU goes into a

sleep mode during which less power is consumed by the SPU.

The results of processing a task are not expected by
other SPUs, or other elements of a PU, until a time budget
4204 expires. Using the time budget established by the
absolute timer, therefore, the results of the SPUs'
processing always are coordinated regardless of the SPUs'

actual processing speeds.

In the future, the speed of processing by the SPUs
will become faster. The time budget established by the
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absolute timer, however, will remain the same. For example,
as shown in Figure 42, an SPU in the future will execute a
task in a shorter period and, therefore, will have a longer
standby period. Busy period 4208, therefore, is shorter
than busy period 4202, and standby period 4210 is longer
than standby period 4206. However, since programs are
written for processing on the basis of the same time budget
established by the absolute timer, coordination of the
results of processing among the SPUs is maintained. As a
result, faster SPUs can process programs written for slower
SPUs without causing conflicts in the times at which the

results of this processing are expected.

In lieu of an absolute timer to establish coordination
among the SPUs, the PU, or one or more designated SPUs, can
analyze the particular instructions or microcode being
executed by an SPU in processing an spulet for problems in
the coordination of the SPUs' parallel processing created
by enhanced or different operating speeds. "No operation"
("NOOP") instructions can be inserted into the instructions
and executed by some of the SPUs to maintain the proper
sequential completion of processing by the SPUs expected by
the spulet. By inserting these NOOPs into the instructions,
the correct timing for the SPUs' execution of all

instructions can be maintained.

Figure 43 is a system diagram showing an SPU acting as
a virtual device. A process running on a different
processor, such as the PU processor is depicted as PU
Process 4300. While in one embodiment process 4300 is run
on the PU processor, it could also be run on a different

SPU processor as SPU processor 4340. Importantly, the
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processor running process 4300 and SPU processor 4340 share
a common memory 4310 from which SPU processor 4340 can save

and retrieve data.

In one embodiment using SPU processor 4340 as a
virtual device, process 4300 writes data to a buffer that,
in a traditional system, is transferred to an actual
device. 1In first transmiss;ons 4315, Process 4300, such as
a graphics library, writes data to the device’s input
buffer (4320) until the buffer is full (or nearly full).
Device input buffer 4320 is stored in common memory 4310.
Common memory 4310 is shared between the processor running

process 4300 and SPU 4340.

When the device’s input buffer is full (or nearly
full), second transmission 4325 is made writing
instructions to instruction block 4330, which is also
stored in the common memory. Instruction block 4330
details the address of the input buffer, an output buffer
(if applicable), and an address of device code 4305 that
the process is requesting to be performed on the data
stored in the input buffer. 1In addition, the instruction
block may include signaling instructions indicating the
method by which the SPU is to signal when the processing is
completed. If the SPU is dedicated to performing a
particular device function, the address of the device code
may also be omitted as the SPU, in this case, performs the

same code to process the designated input buffer.

In the third transmission (4335), process 4300 signals
SPU 4340 by writing the address of instruction block 4330
into the SPU’s mailbox (4345). The mailbox is capable of

storing multiple addresses in a FIFO queue, with each
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address pointing to a different instruction block. SPU
4340 retrieves entries from mailbox 4345 in a FIFO fashion.
Instruction block 4330 corresponding to the address stored
in mailbox 4355 is retrieved, in fourth transmission 4355,
by SPU 4340 using a DMA command to read instruction block
4330 from common memory 4310 and store it in its local
memory 4350. The retrieved instruction block indicates the
address of input buffer 4320 and code address 4305. If the
device code has not already been loaded into the SPU’s
local memory, at fifth transmission 4360 the device code is
retrieved using a DMA command to read device code 4305 from

common memory 4310 and store it in SPU’s local memory 4340

in local memory location 4365.

During the sixth transmission (4370), input buffer
4320 indicated by the address in the retrieved instruction
block is read from common memory 4310 using a DMA command
and stored in the SPU’s local memory at location 4375. 1If
the input buffer is too large to be completely read into
the area of the SPU’s local memory assigned for the input
data, the data is retrieved in successive blocks. Device
code 4365 stored in the SPU’s local memory is used to
process the input data (4375) stored in the SPU’s local
memory and store the results in the SPU’s local memory at
location 4380. An example is using the SPU as a geometry
engine to process graphics commands. When the data has
been processed by the SPU, in the seventh transmission
(4390), the output data, such as graphics primitives data
resulting from a geometry engine, are sent to an output
device. The output device can also be another SPU acting
as another virtual device, such as a hardware rasterizer,

with SPU 4340 setting up an instruction block indicating
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the device code address and input code address needed for
the next SPU to process output data 4380 and signaling the
next SPU by writing the address of the instruction block
into the next SPU’s mailbox. The output device can also be
an actual hardware device, such as a hardware rasterizer,
with SPU 4340 writing output data 4380 to the hardware

device using a DMA write command.

Figures 44-46 show various device code modules being
loaded into the local memory of the SPU. Common memory
4400 is shown with four different device codes of various
sizes. 1In the example shown, common memory 4400 includes
device code 4405 which is 16 kilobytes (16K) in size,
device code 4410 which is 32K in size, device code 4415
which is 16K in size, and device code 4420 which is also
16K in size. In Figure 44, SPU 4430 is shown being
initialized with device code 4405 which is read, using a
DMA command, and stored in the SPU’s local memory 4435. 1In
the example shown, the SPU’s local memory is 128K with 32K
being reserved for storage of input data (input data area
4450) and another 32K being reserved for storage of
resulting data (output data area 4455). Therefore, 64K is
unreserved and able to be used to store device code. After
first loading device code 4405 (DMA read 4425), 16K of the
unreserved memory is allocated to the loaded device code
(SPU local data area 4440) with 48K remaining unused

(unused data area 4445).

In Figure 45, device code 4410 (32K) and device code
4415 (16K) are loaded (DMA reads 4460) filling the
remaining unused local memory in SPU 4430. At this point,

if a request is received for either device code 4405, 4410,
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or 4415, the corresponding device code, 4440, 4465, and
4470, respectively, can be immediately executed without

waiting to load the device code from common memory 4400.

However, in Figure 46, SPU 4430 is requested to
perform an additional device code function (device code
4420) which is 16K in size. Because there is not enough
unused memory in SPU local memory 4435 to load the
requested device code, device code previously stored in the
SPU’s local memory 1s overwritten to accommodate the
request. In the example shown, device code 4440 stored in
the SPU’s local memory is overwritten with device code 4420
read from common memory 4600 (DMA read 4480). The SPU now
has device code 4485, 4465, and 4470 loaded and can perform
any of these device functions immediately upon request. If
device code 4405 is again requested, one of the currently
loaded device codes (4485, 4465, or 4470) will be

overwritten to accommodate the request.

Figure 47 is a flowchart showing the initialization of
a computer system using device code adapted to be executed
by an SPU. Processing commences at 4700 whereupon, at step
4710, the computer system’s operating system is loaded from
nonvolatile storage device 4720. At step 4725, the first
device code is loaded from nonvolatile storage device 4720
and stored in the common memory so that it can be

subsequently retrieved and loaded by one of the SPUs.

A determination is made as to whether an SPU is to be
dedicated to perform the loaded device code (decision
4730). If an SPU is to be dedicated, decision 4730
branches to “yes” branch 4735 whereupon a free (i.e.,

available) SPU is identified at step 4740. A determination
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is made as to whether an available SPU was able to be
identified (decision 4750). For example, all the SPUs may
have already been assigned to different tasks. If an
available SPU was identified, decision 4750 branches to
“yes” branch 4755 whereupon the identified SPU is assigned
to the device function. On the other hand, if an available
SPU was unable to be identified, decision 4750 branches to

”

“no” branch 4765 whereupon, at step 4765, an error is
generated indicating that the system was unable to dedicate
an SPU to perform the function and data structures are
added to manage the device among oné or more non-dedicated
SPUs (predefined process 4780, see Figure 49 and
corresponding text for processing details). Returning to
decision 4730, if the device code is to be performed by

AN Y

non-dedicated SPUs, then decision 4730 branches to “no”
branch 4775 whereupon data structures are also added to
manage the device among one or more non-dedicated SPUs
(predefined process 4780, see Figure 49 and corresponding

text for processing details).

A determination is made as to whether there are
additional device code functions to process (decision
4785). If there are more device code functions, decision
4785 branches to “yes” branch 4788 whereupon the code for
the next virtual device is read from nonvolatile storage
4720 at step 4790 and processing loops back to process the
newly read device code. This looping continues until there
are no more device code functions to process, at which
point decision 4785 branches to “no” branch 4792 and

initialization processing ends at 4795.
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Figure 48 is a flowchart showing steps taken in
managing multiple device code files by an SPU. Processing
commences at 4800 whereupon, at step 4810, a request is
received by an SPU (i.e., by signaling the SPU’s mailbox
with an address of an instruction block). A determination
is made as to whether the device code has already been
loaded in the SPU’s local memory (decision 4820). 1If the
device code is not already loaded in the SPU’s local
memory, decision 4820 branches to “no” branch 4825
whereupon another determination is made as to whether there
is enough free (i.e., unallocated) space in the SPU’s local
memory to load the device code (decision 4830). If there
is enough free space, decision 4830 branches to “yes”
branch 4835 whereupon, at step 4840, the device code is
loaded into the free space in the SPU’s local storage
(i.e., with a DMA read command). On the other hand, if
there is not enough free space available for the device
code, decision 4830 branches to “no” branch 4845 whereupon,
at step 4850, the requested device code is loaded (i.e.,
with a DMA read command) and overwrites device code that
was previously loaded in the SPU. Once the device code is
loaded, at step 4870 the code is executed in order to
process the request. Returning to decision 4820, if the
device code was already in the SPU’s local memory, decision
4820 branches to “yes” branch 4860 and the code is executed

at step 4870. Processing thereafter ends at 4895.

Figure 49 is a diagram showing data structures used to
manage multiple virtual devices that can be performed by
one of the SPUs. Shared common memory 4900 includes device
code for various device functions that is performed on the

SPUs (device code 4905, 4910, and 4915). Data structures
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4920 are initialized to manage the devices. A data
structure is established for each device (data structures
4930, 4950, and 4970 corresponding to device code 4905,
4910, and 4915, respectively). Each of these data
structures includes a task queue and a locking structure
(task queues 4935, 4955, and 4975 corresponding to device
code 4905, 4910, and 4915, respectively, and locking
structures 4940, 4960, and 4980 corresponding to device
code 4905, 4910, and 4915, respectively). Requests are
stored in the task queues for a given device. For example,
if a process is requesting the first device code (4905),
then an address of an instruction block is written into the
task queue that has been established to manage the first
device code (task queue 4935). The locking structure
include an SPU identifier indicating the SPU, if any, that
has acquired the lock and, therefore, is currently
performing the device code (SPU identifiers 4945, 4965, and
4985 corresponding to device code 4905, 4910, and 4915,
respectively). Periodically, when an SPU has no device
code tasks to perform, the SPU checks the various data
structures to determine whether there are any device codes
that have been requested but do not have an SPU assigned.
When an SPU identifies such a data structure, the SPU
acquires the lock by writing its identifier in the
corresponding locking structure and processes the waiting
requests stored in the task queue. When all the requests
have been processed, the SPU is free to release the lock
and search for another device code that has been requested

but does not have an SPU assigned.

Figure 50 is a flowchart showing steps taken by a

process in calling a virtual device executed by one of the
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SPUs. When a process running on a PU or one of the SPUs
needs to call a virtual device, the steps in Figure 50 are
performed. The actual application running on the PU or SPU
may actually call an API included in a library, such as a
graphics library, with the library API code actually

calling the virtual device loaded on one of the SPUs.

Processing commences at 5000 whereupon, at step 5010,
a device request is received (i.e., by the library API
code). At step 5020, the input data that is to be
processed is loaded into an input buffer located in the
common (shared) memory. At step 5030, the output buffer
(if any) is initialized. With some virtual devices, data
is returned, while with other device requests only a return
code is returned. For example, if the virtual device is a
geometry engine with the output being sent to a hardware
rasterizer the output buffer might not be needed or might
only be used to store a return code or error value. At
step 5040, an instruction block is written to the shared
memory indicating the address of the input buffer, the
address of the output buffer (if any), the device code
address, signaling instructions (such as a write-back
address), and any other parameter data needed to perform

the device request.

A determination is made as to whether the requested
device code is performed by a dedicated SPU (decision
5050) . If the device code is performed by a dedicated SPU,
decision 5050 branches to “yes” branch 5055 whereupon, at
step 5060, the address of the instruction block is written
to the dedicated SPU’s mailbox. On the other hand, if the

device code is not performed by a dedicated SPU, then
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decision 5050 branches to “no” branch 5065 whereupon, at
step 5070, the address of the instruction block is written
to the devices task queue data structure so that a non-
dedicated SPU will locate the request and perform the

requested device code.

After the request has been made, either through an
SPU’s mailbox or the device’s task queue, processing waits
for a completion signal (step 5080) indicating that the SPU
has finished the requested processing. At step 5090, the
output buffer or write-back address is read and the results
are handled accordingly (i.e., error processing if an error
occurred, further use or processing of data resulting from
the virtual device, etc.). Processing thereafter ends at

5095.

Figure 51 is a flowchart showing steps taken by non-
dedicated SPUs in identifying and performing requested
virtual device tasks. Processing commences at 5100
whereupon the non-dedicated SPU acquires the lock of the
data structure for the first available (i.e., not yet
assigned) device with task queue entries (step 5105). At
step 5110, the first entry in the acquired task queue is
read. The read task queue entry indicates the address of
the instruction block which is read at step 5115, thus
providing the device code address, input buffer address,
output buffer address (if any), signaling instructions (if
any), and any additional parameters needed to perform the
device request. A determination is made as to whether the
device code is already loaded in the SPU’s local memory
(decision 5120). If the device code has not yet been

loaded in the SPU’s local memory, decision 5120 branches to
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w ”

no” branch 5122 whereupon the device code is read from the
shared memory to SPU local memory 5130 using a DMA command
(step 5125) resulting in device code 5135 stored in the
local memory. On the other hand, if the device code is
already loaded in the SPU’s local memory, decision 5120

branches to “yes” branch 5128 bypassing step 5125.

The data located in the input buffer is read from the
shared memory and stored in the SPU’s local memory using a
DMA command (step 5140) resulting in input data 5145 stored
in SPU local memory 5130. The device code is executed
(step 5150) and results of the code are written to output
data area 5155 stored in SPU local memory 5130. If either
the input data or output data are too large for the SPU
local memory, then the input data can be read in blocks,
stored in the SPU local memory and processed. In addition,
the output data can be written until the output data area
is full and then the output data can be written to the
output buffer (i.e., a buffer space in the shared memory or

sent to an actual hardware device) intermittently.

A determination is made as to whether the input data
is finished being processed by the device code (decision
5160). If the input data is not finished being processed,
decision 5160 branches to “no” branch 5162 which loops back
and continues processing the input data. This looping
continues until the input data is finished being processed,

at which point decision 5160 branches to “yes” branch 5164.

At step 5165, the results (stored in location 5155
within the SPU’s local memory) are written to an output
buffer location, which may be an output buffer stored in

the shared memory (such as buffer 5170) or may be an actual
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hardware device, such as a hardware rasterizer. A
determination is made as to whether there are more requests
for the task queue, the lock for which is being held by the
SPU (decision 5175). If there are more requests queued in
the tasks queue, decision 5175 branches to “yves” branch
5178 whereupon the next entry in the acquired task queue is
read (step 5180) and processing loops back to handle the
next entry. This looping continues until there are no more
entries in the task queue (i.e., indicating that no
processes are currently requesting the device), at which
point decision 5175 branches to “no” branch 5185 whereupon
the lock corresponding to the task queue is released and
the SPU looks for another device task queue that has

waiting entries but has not been acquired by another SPU.

Figure 52 is a flowchart showing steps taken by a
dedicated SPU in performing requested virtual device tasks.
Processing commences at 5200 whereupon, at step 5205, a
request is retrieved indicating the address of an
instruction block. 1In one embodiment, the request of the
instruction block is written to a dedicated task queue data
structure (see Figure 49), while in another embodiment, the
instruction block address is written to the dedicated SPU’s
mailbox. The instruction block is read at step 5210, thus
providing the device code address, input buffer address,
output buffer address (if any), signaling instructions (if
any), and any additional parameters needed to perform the
device request. A determination is made as to whether the
device code is already loaded in the SPU’s local memory
(decision 5215). 1If the device code has not yet been
loaded in the SPU’s local memory, decision 5215 branches to

“no” branch 5218 whereupon the device code is read from the
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shared memory to SPU local memory 5230 using a DMA command
(step 5220) resulting in device code 5235 stored in the
local memory. On the other hand, if the device code is
already loaded in the SPU’s local memory, decision 5215

branches to “yes” branch 5238 bypassing step 5220.

The data located in the input buffer is read from the
shared memory and stored in the SPU’s local memory using a
DMA command (step 5240) resulting in input data 5245 stored
in SPU local memory 5230. The device code is executed
(step 5250) and results of the code are written to output
data area 5255 stored in SPU local memory 5230. If either
the input data or output data are too large for the SPU
local memory, then the input data can be read in blocks,
stored in the SPU local memory and processed. In addition,
the output data can be written until the output data area
is full and then the output data can be written to the
output buffer (i.e., a buffer space in the shared memory or

sent to an actual hardware device) intermittently.

A determination is made as to whether the input data
is finished being processed by the device code (decision
5260). If the input data is not finished being processed,
decision 5260 branches to “no” branch 5262 which loops back
and continues processing the input data. This looping
continues until the input data is finished being processed,

at which point decision 5260 branches to “yes” branch 5264.

At step 5265, the results (stored in location 5255
within the SPU’s local memory) are written to an output
buffer location, which may be an output buffer stored in
the shared memory (such as buffer 5270) or may be an actual

hardware device, such as a hardware rasterizer. A
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determination is made as to whether there are more requests
for the virtual device (decision 5275). If there are more
requests, decision 5275 branches to “yes” branch 5278

whereupon processing loops back to handle the request. If

there are no additional requests queued, decision 5275

w "

branches to “no” branch 5285 whereupon the SPU enters a low
power state and waits for a new request to be written to

the SPU’s mailbox (step 5290).

Figure 53 is a diagram showing a task queue manager
being used to facilitate the handling of virtual device
tasks by SPUs. Applications 5300 request functions that
are often performed by APIs in libraries, such as API
library 5305. These functions may include device
instructions and requests. The APIs in the library can be
programmed to send the requests to physical devices 5310 or
to SPUs that are performing device code, such as a geometry
engine used in graphics applications. When the functions
are performed by SPUs, the request is sent to task queue
manager 5315 which provides services on behalf of the
requesting application and API. These services include
posting the requested task to the appropriate queues
(process 5320) and sending the requests to SPUs that have
been identified (process 5325). The task queue manager
also sends completion notifications back to the requesting

API/application.

In posting a task, the task queue manager writes an
instruction block 5330 that includes the address of the
device code being requested, the addresses of the input and
output buffers, signaling instructions (if needed) and any

parameters needed to perform the requested device code. 1In
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addition, the address of the instruction block is written
to FIFO task queue 5335 so that the request will be
recorded and handled by the identified SPU.

In identifying the SPU to perform the request, task
queues and device histories are checked to determine
whether an SPU is currently performing the device code and,
if no SPU is currently performing the device code, to
select the SPU, based on device history data 5340, that
recently performed the code and, therefore, might still
have a copy of the code available in the SPU’s local

memory.

SPUs 5360 include a number of SPUs that each have a
local memory and a mailbox. In addition, each of the SPUs
is able to write/read data to/from common (shared) memory
5328 using DMA commands. In the example shown, the SPUs
include SPUs 5370, 5370, and 5390. Each of these SPUs have
a local memory, 5372, 5382, and 5392, respectively. Each
of these SPUs also have a mailbox, 5376, 5386, and 539€,
respectively. When an SPU receives a request, it retrieves
the corresponding instruction block 5330 with details
regarding the request. The SPU also retrieves device code
5345, input buffer data 5350, and an output buffer address
5355 (optional). The SPU reads data from the instruction
block and the input buffer using DMA commands and writes
data to the output buffer (or to another SPU or physical

device) also using DMA commands.

Figure 54 is a flowchart showing steps taken by the
task queue manager in facilitating the handling of device

tasks by SPUs. Task queue manager processing commences at
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5400. The task queue manager can be executed as a PU

process or as an SPU process.

The task queue manager receives a request from
applications through APIs included in API library 5418
(predefined process 5410, see Figure 55 and corresponding
text for processing details). An example of such an API
library is a graphics library used to perform graphics
functions. At step 5420, an output buffer (or write-back
address) is set up to retrieve data, or return codes,
resulting from the device code processing if the

application (i.e., API) has not supplied an output buffer.

At step 5425, a task data block (i.e., information
block) is created with the data that the SPU will need to
process the request, such as the device code address, the
input buffer address, the output buffer address (if
needed), signaling instructions (such as a write-back
address), and any additional parameters that might be
needed to execute the device code request. The request is
added to the task queue by writing the address of the
created information block to the task queue that

corresponds to the requested device code.

The task queue manager determines whether one of the
SPUs is currently assigned to the requested device task
(decision 5435). If an SPU is not currently assigned to
the requested task, decision 5435 branches to “no” branch
5440 whereupon, at step 5445, the task queue manager
analyzes device history data and the existing task queues.
Based on this analysis, at step 5450 the task queue manager
identifies the SPU that is the least busy and recently

performed the requested device code. The least busy aspect
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of the analysis will favor SPUs that are currently not
assigned to a particular device code, while the recently
performed aspect of the analysis favors those SPUs that may
still have the requested device code available in the SPU’s
local memory. At step 5455, when one of the SPUs has been
identified by the task queue manager, the task queue for
the device code is assigned to the identified SPU. At step
5460, the history data is updated reflecting the assignment
so that during subsequent analyses it will be known that
the identified SPU once loaded the device code into the

SPU’s local memory.

Returning to decision 5435, if one of the SPUs is
currently assigned to (i.e., executing) the device code,
decision 5435 branches to “yes” branch 5465 bypassing steps
5445-5460.

The mailbox of the SPU that has been assigned to the
device code task i1s signaled, at step 5470, by writing the
address of the instruction block that was prepared in step
5425 into the mailbox. In one implementation, each SPU has
a limited mailbox size that accommodates four entries. 1In
this implementation, the task queue manager polls the
mailbox of the assigned SPU to ensure that space exists in
the SPU’s mailbox. If space does not exist, the task queue
manager queues the request and periodically polls the SPU’s
mailbox whereupon the request are only added to the mailbox

when a slot is available.

A determination is made as to whether there are more
requests for the task queue manager to handle (decision
5475). If there are additional requests, decision 5475
branches to “yes” branch 5480 which loops back to handle



10

15

20

25

30

Docket No. AUS920030704US1 63 Atty. Ref. No. IBM-3056

the next request. On the other hand, when there are no
more requests (i.e., system shutdown), decision 5475
branches to “no” branch 5485 whereupon task queue manager

processing ends at 5495.

Figure 55 is a flowchart showing the task queue
manager notifying applications that previously requested
device requests. This flowchart show the details of the
processing that occurs within predefined process 5410 shown

in Figure 54.

Processing commences at 5500 whereupon the request
received from the application/API is analyzed (step 5510).
A determination is made as to whether the application/API
provided an address of a data structure to use to signal
the application/API when the request has been completed

(decision 5520). If a data structure was not supplied by

W ”

the application/API, decision 5520 branches to “no” branch
5525 whereupon a data structure is created for storing
completion information (step 5530) and the address of the
data structure is returned to the application/API at step
5535. On the other hand, if the application/API provided a
data structure to use in returning data, decision 5520
branches to “yes” branch 5545 bypassing steps 5530 and

5535.

At step 5550, the data structure is associated with
the request sent to the SPU. At step 5555, the task
manager receives a response from SPU 5560 that performed
the request. In one embodiment, the SPU writes an address
to the queue manager’s mailbox (5565), in another
embodiment, the SPU writes an address back to a write-back

queue included with the data structures used by the task
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manager to manage the virtual device. In any event, at
step 5555, the task manager receives a completion signal
from the SPU. At step 5570, the output data structure
associated with the original request is identified by
reading request data structures 5575. At step 5580, the
completion data received from the SPU is written to the
output data structure. The output data structure is
unlocked at step 5590 (i.e., notifying an application/API
waiting on the lock or semaphore) so that the
application/API 5540 receives the result data from the
appropriate data structure. Processing then returns to the

calling routine at 5595.

Figure 56 is a flowchart showing steps taken by SPUs
being managed by the task queue manager. SPU processing
commences at 5600 whereupon, at step 5610, the SPU receives
a mailbox request from the queue manager written to the

SPU’s mailbox (5615).

The first entry in the SPU’s mailbox is read at step
5620. This entry is an address of an instruction block
located in shared memory. The SPU reads the instruction
block by using DMA commands to retrieve the identified
instruction block (step 5625). The instruction block
indicates the code address for the code that the SPU is
being requested to execute, the addresses of the input and
output buffers, the signaling instructions (i.e., write-
back address), and any additional parameters needed to

perform the request.

A determination is made as to whether the code
identified in the instruction block is already loaded in

the SPU’s local memory (decision 5630). If the code is not
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currently loaded in the SPU’s local memory, decision 5630

w ”

branches to “no” branch 5632 whereupon the code is read
from shared memory using DMA commands and stored in the
SPU’s local memory. On the other hand, if the code is
already in the SPU’s local memory, decision 5630 branches

to “yes” branch 5638 bypassing step 5635.

The data located in the input buffer is read from the
shared memory and stored in the SPU’s local memory using a
DMA command (step 5640) resulting in input data 5660 stored
in SPU local memory 5650. The device code is executed
(step 5645) and results of the code are written to output
data area 5665 stored in SPU local memory 5650. If either
the input data or output data are too large for the SPU
local memory, then the input data can be read in blocks,
stored in the SPU local memory and processed. 1In addition,
the output data can be written until the output data area
is full and then the output data can be written to the
output buffer (i.e., a buffer space in the shared memory or

sent to an actual hardware device) intermittently.

A determination is made as to whether the input data
is finished being processed by the device code (decision
5670). If the input data is not finished being processed,
decision 5670 branches to “no” branch 5672 which loops back
and continues processing the input data. This looping
continues until the input data is finished being processed,

at which point decision 5670 branches to “yes” branch 5674.

At step 5675, the results (stored in location 5665
within the SPU’s local memory) are written to an output
buffer location, which may be an output buffer stored in

the shared memory or may be an actual hardware device, such
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as a hardware rasterizer. A determination is made as to
whether there are more requests waiting in the SPU’s
mailbox (decision 5685). If there are more requests in
SPU’s mailbox, decision 5685 branches to “yes” branch 5690
whereupon the next entry (i.e., address) in the SPU’s
mailbox is read (step 5693) and processing loops back to
process the request. This looping continues until there
are no more entries in the mailbox, at which point decision
5685 branches to “no” branch 5695 whereupon the SPU enters
a low power state and waits for a request to be written to

the SPU’s mailbox (step 5698).

Figure 57 is a system diagram showing the system
components and intercommunication involved in using one of
the SPUs as an isolated encryption device. When an SPU is
set up as an encryption device, its local memory is not
shared in the common memory map. So, while the encryption
SPU can read and write data to and from shared common
memory (i.e., using DMA commands), other processors are
unable to read and write to the encryption SPU’s local
memory. In addition, special, nonvolatile registers that
can be used to store a variety of encryption keys is
available to the encryption SPU, however these special
registers cannot be read by SPUs that are operating in
“shared” mode (i.e., special registers are not available to
SPUs that have local memory mapped to the shared memory

map) .

Common memory map 5710 shows memory that is shared
amongst the processors. In one embodiment, each SPU and PU
has its own DMA controller for accessing shared memory.

Common (shared) memory includes PU local memory 5715 as
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well as shared local memory 5720 of those SPUs (5760) that
are running in shared, as opposed to private, mode. In the
example shown in Figure 57, SPU local memory 5765 is mapped
to common memory map 5710 as shared memory 5720. As shared
memory, other processors, such as PU 5700, are able to read
and write data to local memory of SPUs that are running in

shared mode.

Encryption SPU 5730, however is running in private
mode so that its local memory (5740) is not shared,
preventing processes running in other processors to access
the encryption SPU’s local memory, and therefore making it
exceedingly difficult for hackers or other miscreants from
discovering the encryption keys used by the encryption SPU.
By running in private mode, the encryption SPU is provided
with access to nonvolatile special registers 5725 that

include encryption keys used by the encryption SPU.

Encryption SPU 5730 includes mailbox 5735 and local
memory 5740. Mailbox 5735 is used by other processors to
request that the encryption SPU perform a particular
encryption task. The request includes an address of an
instruction block, as described in Figures 43-56. The
instruction block is read from the shared memory by the
encryption SPU (DMA transmission 5785). The instruction
block includes a code address of the encryption process or
algorithm being requested (e.g., SHA-256, decryption,
encryption, etc.), the address of the input buffer that is
being requested to be processed, and the address of the
output buffer where the encryption SPU should write the
transformed data. If the requested encryption

code/algorithm is not currently loaded in the encryption
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SPU’s local memory, the encryption.SPU loads the requested
code/algorithm from the shared memory using a DMA
instruction (DMA transmission 5790) and the SPU
authenticates the code to ensure that the code will not
compromise the encryption keys stored in the nonvolatile
special registers. The encryption code is stored in the
encryption SPU’s local memory (5745) for processing data.
The address of the input buffer is retrieved from the
instruction block and the data is read from the shared
memory by the encryption SPU using a DMA command (DMA
transmission 5770) and stored in encryption SPU local
memory area 5750. When the encryption SPU is finished
using the encryption code/algorithms to transform the input
data (i.e., encrypting the data, decrypting the data,
providing a digital signature, etc.), the encryption SPU
writes the resulting data stored in encryption SPU local
memory area 5755 back to shared memory area 5710 using
another DMA command. The encryption SPU can also signal
the requesting process indicating that the request has

completed.

Figure 58 is a flowchart showing steps taken to
initialize one of the SPUs as an isolated encryption
device. Processing commences at 5800 whereupon, at step
5810, the SPU reads initialization code from the shared
memory area and stores the initialization code in the SPU’s
local memory. At step 5820, the initialization code loaded
in the SPU’s local memory is authenticated using a secure
(i.e., nonchangeable) ROM software routine that ensures
that the initialization code is legitimate and will not
compromise the system’s encryption keys and other sensitive

information stored in the nonvolatile special registers.
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A determination is made as to whether the loaded
initialization code is authentic (decision 5830). If the
code is authentic, decision 5830 branches to “yes” branch
5835 whereupon the SPU runs in private mode (step 5480) and
receives access to nonvolatile special registers 5850. The
SPU is then able to perform encryption tasks using the
encryption keys located in the special registers
(predefined process 5860, see Figure 59 and corresponding

text for processing details).

On the other hand, if the initialization code is not
authentic, indicating that someone has tampered with the
code, decision 5830 branches to “no” branch 5865 whereupon,
at step 5870, the SPU is able to run in shared mode (or
private mode), but does not receive access to the
nonvolatile special registers. If the SPU is running in
shared mode, at step 5880, some or all of its local memory

is mapped to the common shared memory map.
SPU initialization processing thereafter ends at 5895.

Figure 59 is a flowchart showing steps taken by an
encryption SPU in receiving and processing encryption
requests from other system components, such as processors

including other SPUs and PUs.

PU or SPU processing commences at 5900 with a process
encountering data that needs to be encrypted or decrypted
(step 5905). The processing may be programmed in
encryption API functions that, in turn, use the encryption
SPU to perform encryption and decryption operations. The
requesting process, at step 5910, creates an instruction

block that details the encryption process/algorithm that is



10

15

20

25

30

Docket No. AUS920030704US1 70 Atty. Ref. No. IBM-3056

being requested, the address of the input buffer containing
the data to be encrypted/decrypted, and the address of the
output buffer to which the encryption SPU should write the
resulting data. In addition, any additional parameters
needed by the requested encryption algorithm or process are
included in the instruction block. The instruction block
is written to a location in the common (shared) memory 5911

to location 5912.

The requesting process, at step 5920, signals the
encryption SPU regarding the request by writing the address
of instruction block 5912 to the encryption SPU’s mailbox
5925. The requesting process then waits, at step 5922, for

results to be returned from the encryption SPU.

Encryption SPU processing commences at 5930. At step
5935, the encryption SPU receives the request from its
mailbox 5925. The instruction block (5912), the address of
which is included with the request, is read from common

memory 5911 using a DMA command (step 5940).

A determination is made as to whether the encryption
code and algorithm referenced in the instruction block are
already loaded in the encryption SPU’s local memory
(decision 5945). 1If the code is not currently in the
encryption SPU’s local memory, decision 5945 branches to
“no” branch 5948 whereupon, at step 5950, the encryption
code/algorithms are loaded from location 5914 in the common
(shared) memory to the encryption SPU’s local memory using
a DMA command. On the other hand, if the encryption
code/algorithms are already in the encryption SPU’s local
memory, decision 5945 branches to “no” branch 5952

bypassing step 5950.



10

15

20

25

30

Docket No. AUS920030704US1 71 Atty. Ref. No. IBM-3056

At step 5955, the input data is read, using a DMA
command from location 5916 in common memory 5911 to the
encryption SPU’s local memory. At step 5960, encryption
keys needed to execute the requested encryption
code/algorithms are retrieved from nonvolatile special
registers 5965. The encryption process (i.e., encryption,
decryption, digital signature, etc.) is performed using the
appropriate encryption keys (step 5970). At step 5975, the
resulting data is written back to the output buffer area of
the common memory and, at step 5980, the encryption SPU
signals the requesting process that the encryption
processing is complete, along with any error or return code

values.

A determination is made as to whether there are more
encryption requests waiting in the encryption SPU’s mailbox
(decision 5985). If there are additional requests,
decision 5985 branches to “yes” branch 5986 which loops
back to retrieve the next instruction block address and
process the instruction accordingly. On the other hand, if
there are no requests waiting in the encryption SPU’s
mailbox, decision 5985 branches to “no” branch 5988
whereupon the encryption SPU enters a low power state and
waits for a request to arrive in its mailbox. When a
request arrives, the encryption SPU leaves the low power
state and loops back to retrieve and process the request

from the mailbox.

Returning to PU / SPU processing, the process was
waiting for a completion signal from the encryption SPU.
This signal arrives and processing leaves step 5922 and, at

step 5996, the requesting process retrieves, from common
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memory 5911, the resulting data that was written by the
encryption SPU to the output buffer. The requesting

process can now perform operations on the resulting data
(i.e., send the data to another computer, read data that

was encrypted, etc.). Requesting process then ends at
5998.

Figure 60 is a block diagram illustrating a processing
element having a main processor and a plurality of secondary
processors sharing a system memory. Processor Element (PE)
6005 includes processing unit (PU) 6010, which, in one
embodiment, acts as the main processor and runs an operating
system. Processing unit 6010 may be, for example, a Power PC
core executing a Linux operating system. PE 6005 also
includes a plurality of synergistic processing complex’s
(SPCs) such as SPCs 6045, 6065, and 6085. The SPCs include
synergistic processing units (SPUs) that act as secondary
processing units to PU 6010, a memory storage unit, and
local storage. For example, SPC 6045 includes SPU 6060, MMU
6055, and local storage 6059; SPC 6065 includes SPU 6070,
MMU 6075, and local storage 6079; and SPC 6085 includes SPU
6090, MMU 6095, and local storage 6099.

Each SPC may be configured to perform a different task,
and accordingly, in one embodiment, each SPC may be accessed
using different instruction sets. If PE 6005 is being used
in a wireless communications system, for example, each SPC
may be responsible for separate processing tasks, such as
modulation, chip rate processing, encoding, network
interfacing, etc. In another embodiment, the SPCs may have

identical instruction sets and may be used in parallel with
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each other to perform operations benefiting from parallel

processing.

PE 6005 may also include level 2 cache, such as L2
cache 6015, for the use of PU 6010. In addition, PE 6005
includes system memory 6020, which is shared between PU 6010
and the SPUs. System memory 6020 may store, for example, an
image of the running operating system (which may include the
kernel), device drivers, I/0 configuration, etc., executing
applications, as well as other data. System memory 6020
includes the local storage units of one or more of the SPCs,
which are mapped to a region of system memory 6020. For
example, local storage 6059 may be mapped to mapped region
6035, local storage 6079 may be mapped to mapped region
6040, and local storage 6099 may be mapped to mapped region
6042. PU 6010 and the SPCs communicate with each other and
system memory 6020 through bus 6017 that is configured to

pass data between these devices.

The MMUs are responsible for transferring data between
an SPU’s local store and the system memory. In one
embodiment, an MMU includes a direct memory access (DMA)
controller configured to perform this function. PU 6010 may
program the MMUs to control which memory regions are
available to each of the MMUs. By changing the mapping
available to each of the MMUs, the PU may control which SPU
has access to which region of system memory 6020. 1In this
manner, the PU may, for example, designate regions of the
system memory as private for the exclusive use of a
particular SPU. 1In one embodiment, the SPUs’ local stores

may be accessed by PU 6010 as well as by the other SPUs
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using the memory map. In one embodiment, PU 6010 manages
the memory map for the common system memory 6020 for all the
SPUs. The memory map table may include PU 6010’s L2 Cache
6015, system memory 6020, as well as the SPUs’ shared local

stores.

In one embodiment, the SPUs process data under the
control of PU 6010. The SPUs may be, for example, digital
signal processing cores, microprocessor cores, micro
controller cores, etc., or a combination of the above cores.
Each one of the local stores is a storage area associated
with a particular SPU. In one embodiment, each SPU can
configure its local store as a private storage area, a
shared storage area, or an SPU may configure its local store

as a partly private and partly shared storage.

For example, if an SPU requires a substantial amount of
local memory, the SPU may allocate 100% of its local store
to private memory accessible only by that SPU. If, on the
other hand, an SPU requires a minimal amount of local
memory, the SPU may allocate 10% of its local store to
private memory and the remaining 90% to shared memory. The
shared memory is accessible by PU 6010 and by the other
SPUs. An SPU may reserve part of its local store in order
for the SPU to have fast, guaranteed memory access when
performing tasks that require such fast access. The SPU may
also reserve some of its local store as private when
processing sensitive data, as is the case, for example, when

the SPU is performing encryption/decryption.

Although the invention herein has been described with

reference to particular embodiments, it is to be understood
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that these embodiments are merely illustrative of the
principles and applications of the present invention. It is
therefore to be understood that numerous modifications may
be made to the illustrative embodiments and that other
arrangements may be devised without departing from the
spirit and scope of the present invention as defined by the

appended claims.

One of the preferred implementations of the invention
is an application, namely, a set of instructions (program
code) in a code module which may, for example, be resident
in the random access memory of the computer. Until
required by the computer, the set of instructions may be
stored in another computer memory, for example, on a hard
disk drive, or in removable storage such as an optical disk
(for eventual use in a CD ROM) or floppy disk (for eventual
use in a floppy disk drive), or downloaded via the Internet
or other computer network. Thus, the present invention may
be implemented as a computer program product for use in a
computer. In addition, although the various methods
described are conveniently implemented in a general purpose
computer selectively activated or reconfigured by software,
one of ordinary skill in the art would also recognize that
such methods may be carried out in hardware, in firmware,
or in more specialized apparatus constructed to perform the

required method steps.

While particular embodiments of the present invention
have been shown and described, it will be obvious to those
skilled in the art that, based upon the teachings herein,
changes and modifications may be made without departing

from this invention and its broader aspects and, therefore,
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the appended claims are to encompass within their scope all
such changes and modifications as are within the true
spirit and scope of this invention. Furthermore, it is to
be understood that the invention is solely defined by the
appended claims. It will be understood by those with skill
in the art that if a specific number of an introduced claim
element is intended, such intent will be explicitly recited
in the claim, and in the absence of such recitation no such
limitation is present. For a non-limiting example, as an
aid to understanding, the following appended claims contain
usage of the introductory phrases “at least one” and “one
or more” to introduce claim elements. However, the use of
such phrases should not be construed to imply that the
introduction of a claim element by the indefinite articles

w ”

a or “an

”

limits any particular claim containing such
introduced claim element to inventions containing only one
such element, even when the same claim includes the
introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an”; the same holds

true for the use in the claims of definite articles.
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